翻訳と辞書
Words near each other
・ Jacobs Wind
・ Jacobs, Louisville
・ Jacobs, Pennsylvania
・ Jacobs, Wisconsin
・ Jacobs-Hutchinson Block
・ Jacobsbaai
・ Jacobsburg Environmental Education Center
・ Jacobsburg, Ohio
・ Jacobsdal
・ Jacobi polynomials
・ Jacobi Robinson
・ Jacobi rotation
・ Jacobi set
・ Jacobi sum
・ Jacobi symbol
Jacobi theta functions (notational variations)
・ Jacobi triple product
・ Jacobi zeta function
・ Jacobi's formula
・ Jacobi's four-square theorem
・ Jacobi's theorem
・ Jacobian
・ Jacobian conjecture
・ Jacobian curve
・ Jacobian ideal
・ Jacobian matrix and determinant
・ Jacobian variety
・ Jacobiasca formosana
・ Jacobie Adriaanse
・ Jacobikerk


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Jacobi theta functions (notational variations) : ウィキペディア英語版
Jacobi theta functions (notational variations)
There are a number of notational systems for the Jacobi theta functions. The notations given in the Wikipedia article define the original function
:
\vartheta_(z; \tau) = \sum_^\infty \exp (\pi i n^2 \tau + 2 \pi i n z)

which is equivalent to
:
\vartheta_(z, q) = \sum_^\infty q^ \exp (2 \pi i n z)

However, a similar notation is defined somewhat differently in Whittaker and Watson, p. 487:
:
\vartheta_(x) = \sum_^\infty q^ \exp (2 \pi i n x/a)

This notation is attributed to "Hermite, H.J.S. Smith and some other mathematicians". They also define
:
\vartheta_(x) = \sum_^\infty (-1)^n q^ \exp (\pi i (2 n + 1) x/a)

This is a factor of ''i'' off from the definition of \vartheta_ as defined in the Wikipedia article. These definitions can be made at least proportional by ''x'' = ''za'', but other definitions cannot. Whittaker and Watson, Abramowitz and Stegun, and Gradshteyn and Ryzhik all follow Tannery and Molk, in which
:
\vartheta_1(z) = -i \sum_^\infty (-1)^n q^ \exp ((2 n + 1) i z)
:
\vartheta_2(z) = \sum_^\infty q^ \exp ((2 n + 1) i z)
:
\vartheta_3(z) = \sum_^\infty q^ \exp (2 n i z)
:
\vartheta_4(z) = \sum_^\infty (-1)^n q^ \exp (2 n i z)
Note that there is no factor of π in the argument as in the previous definitions.
Whittaker and Watson refer to still other definitions of \vartheta_j. The warning in Abramowitz and Stegun, "There is a bewildering variety of notations...in consulting books caution should be exercised," may be viewed as an understatement. In any expression, an occurrence of \vartheta(z) should not be assumed to have any particular definition. It is incumbent upon the author to state what definition of \vartheta(z) is intended.
==References==

* Milton Abramowitz and Irene A. Stegun, ''Handbook of Mathematical Functions'', (1964) Dover Publications, New York. ISBN 0-486-61272-4. ''(See section 16.27ff.)''
* I. S. Gradshteyn and I. M. Ryzhik, ''Table of Integrals, Functions, and Products'', (1980) Academic Press, London. ISBN 0-12-294760-6. ''(See section 8.18)''
* E. T. Whittaker and G. N. Watson, ''A Course in Modern Analysis'', fourth edition, Cambridge University Press, 1927. ''(See chapter XXI for the history of Jacobi's θ functions)''

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Jacobi theta functions (notational variations)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.